Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.118
Filtrar
1.
Sci Rep ; 14(1): 8672, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622317

RESUMO

Extraction of lignin via green methods is a crucial step in promoting the bioconversion of lignocellulosic biomasses. In the present study, utilisation of natural deep eutectic solvent for the pretreatment of kenaf fibres biomass is performed. Furthermore, extracted lignin from natural deep eutectic solvent pretreated kenaf biomass was carried out and its comparative study with commercial lignin was studied. The extracted lignin was characterized and investigated through Infrared Fourier transform spectroscopy, X-ray Diffraction, thermogravimetric analysis, UV-Vis spectroscopy, and scanning electron microscopy. FTIR Spectra shows that all samples have almost same set of absorption bands with slight difference in frequencies. CHNS analysis of natural deep eutectic solvent pretreated kenaf fibre showed a slight increase in carbon % from 42.36 to 43.17% and an increase in nitrogen % from - 0.0939 to - 0.1377%. Morphological analysis of commercial lignin shows irregular/uneven surfaces whereas natural deep eutectic solvent extracted lignin shows smooth and wavy surface. EDX analysis indicated noticeable peaks for oxygen and carbon elements which are present in lignocellulosic biomass. Thermal properties showed that lignin is constant at higher temperatures due to more branching and production of extremely condensed aromatic structures. In UV-VIS spectroscopy, commercial lignin shows slightly broad peak between 300 and 400 nm due to presence of carbonyl bond whereas, natural deep eutectic solvent extracted lignin does not show up any peak in this range. XRD results showed that the crystallinity index percentage for kenaf and natural deep eutectic solvent treated kenaf was 70.33 and 69.5% respectively. Therefore, these innovative solvents will undoubtedly have significant impact on the development of clean, green, and sustainable products for biocatalysts, extraction, electrochemistry, adsorption applications.


Assuntos
Hibiscus , Lignina , Lignina/química , Solventes Eutéticos Profundos , Biomassa , Carboidratos , Solventes/química , Carbono , Hidrólise
2.
PLoS One ; 19(4): e0301384, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38574047

RESUMO

A comprehensive analysis of outdoor weathering and soil burial of cork during 1-year experiments was carried out with measurements of CIELAB color parameters, cellular observations by scanning electron microscopy, and surface chemical features analysed by ATR-FTIR and wet chemical analysis. Cork applied in outdoor conditions above and below ground retained its physical structure and integrity without signs of deterioration or fracturing. The cellular structure was maintained with some small changes at the one-cell layer at the surface, featuring cellular expansion and minute cell wall fractures. Surface color and chemistry showed distinct results for outdoor exposure and soil burial. The weathered cork surfaces acquired a lighter color while the soil buried cork surfaces became darker. With outdoor weathering, the cork polar solubles increased (13.0% vs. 7.6% o.d. mass) while a substantial decrease of lignin occurred (about 28% of the original lignin was removed) leading to a suberin-enriched cork surface. The chemical impact on lignin is therefore responsible for the surface change towards lighter colors. Soil-burial induced hydrolysis of ester bonds of suberin and xylan, and the lignin-enriched cork surface displayed a dark brown color. FTIR and wet chemical results were consistent. Overall cork showed a considerable structural and physical stability that allows its application in outdoor conditions, namely for building façades or other surfacing applications. Architects and designers should take into account the color dynamics of the cork surfaces.


Assuntos
Lignina , Tempo (Meteorologia) , Lignina/química , Cor , Solo
3.
Sci Prog ; 107(1): 368504241239447, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511725

RESUMO

Since the environmentally friendly reuse of corn stalks attracts more and more attention, it is an efficient and feasible way to reuse corn stalks as forage. However, whether the cellulose, lignin, and hemicellulose within corn stalks can be effectively decomposed becomes a key to reusing corn stalks as forage. Orthogonal test was designed by five different degradation temperatures (22°C, 24°C, 26°C, 28°C, 30°C), five different pH values (4, 5, 6, 8, 10), and five different degradation time durations (5, 15, 25, 30, and 35 days) to examine 25 kinds of different degradation conditions. It was found that the decomposition effect of hemicellulose, cellulose, and lignin, of group 25 (26°C, pH = 5, 25 days) was stronger compared with other groups, with the contents calculated as 8.22%, 31.55%, and 22.55% individually (p < 0.01, p < 0.05). Group 19 (22°C, pH = 4, 5 days) revealed the worst degradation effect of cellulose, lignin, and hemicellulose compared to other groups, with contents calculated as 15.48%, 38.85%, and 29.57%, individually (p < 0.01, p < 0.05). The research data deliver a basis for ideal degradation conditions for corn stalks degradation in combination with the digestive enzymes of P. chrysosporium and O. furnacalis larva. Aiming to explore a highly efficient and environmentally friendly corn stalk degradation method.


Assuntos
Lignina , Zea mays , Lignina/química , Lignina/metabolismo , Zea mays/metabolismo , Celulose/metabolismo , Fungos/metabolismo
4.
Biotechnol Adv ; 72: 108344, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38521282

RESUMO

Biohydrogen (Bio-H2) is widely recognized as a sustainable and environmentally friendly energy source, devoid of any detrimental impact on the environment. Lignocellulosic biomass (LB) is a readily accessible and plentiful source material that can be effectively employed as a cost-effective and sustainable substrate for Bio-H2 production. Despite the numerous challenges, the ongoing progress in LB pretreatment technology, microbial fermentation, and the integration of molecular biology techniques have the potential to enhance Bio-H2 productivity and yield. Consequently, this technology exhibits efficiency and the capacity to meet the future energy demands associated with the valorization of recalcitrant biomass. To date, several pretreatment approaches have been investigated in order to improve the digestibility of feedstock. Nevertheless, there has been a lack of comprehensive systematic studies examining the effectiveness of pretreatment methods in enhancing Bio-H2 production through dark fermentation. Additionally, there is a dearth of economic feasibility evaluations pertaining to this area of research. Thus, this review has conducted comparative studies on the technological and economic viability of current pretreatment methods. It has also examined the potential of these pretreatments in terms of carbon neutrality and circular economy principles. This review paves the way for a new opportunity to enhance Bio-H2 production with technological approaches.


Assuntos
Hidrogênio , Lignina , Biomassa , Hidrogênio/química , Lignina/química , Fermentação , Biocombustíveis
5.
Int J Biol Macromol ; 265(Pt 2): 131093, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521306

RESUMO

The hierarchical and heterogeneous structures and the interactions between biomass components within cell walls are closely related to the pyrolysis characteristics. In this work, thermogravimetric analysis (TGA) and pyrolysis kinetics analysis were used to investigate the pyrolysis characteristics of windmill palm (Trachycarpus fortunei (Hook.) H. Wendl.) culm and silk after delignification. The results demonstrate cellulose pyrolysis temperature of silk is much higher than that of culm, attributed to the higher lignin content of the former. After delignification, the cellulose pyrolysis temperature of silk decreased by 48 °C, which is much higher than that of culm by 18 °C, suggesting a strong interaction between lignin and cellulose during the pyrolysis process. Futhermore, pyrolysis kinetics analysis also found that the frequency factor of slik and culm increased by 129 % and 26 %, respectively, attributed to the disappearance of the carbon layer formed by lignin pyrolysis process. And, differ in lignin content is responsible for the discrepancy of frequency factor increase. In conclusion, we propose a mechanism model for lignin hindering cellulose pyrolysis, which is of great significance for understanding the pyrolysis interactions of biomass components in complex supramolecular cell wall.


Assuntos
Celulose , Lignina , Celulose/química , Lignina/química , Pirólise , Termogravimetria , Temperatura , Biomassa , Cinética
6.
Int J Biol Macromol ; 265(Pt 2): 131084, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521312

RESUMO

Lignocellulosic biomass contains lignin, an aromatic and oxygenated substance and a potential method for lignin utilization is achieved through catalytic conversion into useful phenolic and aromatic monomers. The application of monometallic catalysts for lignin hydrogenolysis reaction remains one of the major reasons for the underutilization of lignin to produce valuable chemicals. Monometallic catalysts have many limitations such as limited catalytic sites for interacting with different lignin linkages, poor catalytic activity, low lignin conversion, and low product selectivity. It is due to lack of synergy with other metallic catalysts that can enhance the catalytic activity, stability, selectivity, and overall catalytic performance. To overcome these limitations, works on the application of bimetallic catalysts that can offer higher activity, selectivity, and stability have been initiated. In this review, cutting-edge insights into the catalytic hydrogenolysis of lignin, focusing on the production of phenolic and aromatic monomers using bimetallic catalysts within an internal hydrogen donor solvent are discussed. The contribution of this work lies in a critical discussion of recent reported findings, in-depth analyses of reaction mechanisms, optimal conditions, and emerging trends in lignin catalytic hydrogenolysis. The specific effects of catalytic active components on the reaction outcomes are also explored. Additionally, this review extends beyond current knowledge, offering forward-looking suggestions for utilizing lignin as a raw material in the production of valuable products across various industrial processes. This work not only consolidates existing knowledge but also introduces novel perspectives, paving the way for future advancements in lignin utilization and catalytic processes.


Assuntos
Hidrogênio , Lignina , Lignina/química , Solventes/química , Fenóis , Catálise
7.
Int J Biol Macromol ; 265(Pt 2): 131085, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38521335

RESUMO

In contrast to conventional particles characterized by isotropic surfaces, Janus particles possess anisotropic surfaces, resulting in unique physicochemical properties and functional attributes. In recent times, there has been a surge in interest regarding the synthesis of Janus particles using biological macromolecules. Various synthesis techniques have been developed for the fabrication of Janus materials derived from biomass. These methods include electrospinning, freeze-drying, secondary casting film formation, self-assembly technology, and other approaches. In the realm of Janus composite materials, those derived from biomass have found extensive applications in diverse domains including oil-water separation, sensors, photocatalysis, and medical materials. This article provides a systematic introduction to the classification of Janus materials, with a specific focus on various types of biomass-based Janus materials (mainly cellulose-based Janus materials, lignin-based Janus materials and protein-based Janus materials) and the methods used for their preparation. This work will not only deepen the understanding of biomass-based Janus materials, but also contribute to the development of new methods for designing biomass-based Janus structures to optimize biomass utilization.


Assuntos
Celulose , Nanopartículas Multifuncionais , Biomassa , Lignina/química , Tecnologia
8.
Analyst ; 149(8): 2399-2411, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38477231

RESUMO

Lignin is a complex heteroaromatic polymer which is one of the most abundant and diverse biopolymers on the planet. It comprises approximately one third of all woody plant matter, making it an attractive candidate as an alternative, renewable feedstock to petrochemicals to produce fine chemicals. However, the inherent complexity of lignin makes it difficult to analyse and characterise using common analytical techniques, proving a hindrance to the utilisation of lignin as a green chemical feedstock. Herein we outline the tracking of lignin degradation by an alkaliphilic laccase in a semi-quantitative manner using a combined chemical analysis approach using Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) to characterise shifts in chemical diversity and relative abundance of ions, and NMR to highlight changes in the structure of lignin. Specifically, an alkaliphilic laccase was used to degrade an industrially relevant lignin, with compounds such as syringaresinol being almost wholly removed (95%) after 24 hours of treatment. Structural analyses reinforced these findings, indicating a >50% loss of NMR signal relating to ß-ß linkages, of which syringaresinol is representative. Ultimately, this work underlines a combined analytical approach that can be used to gain a broader semi-quantitative understanding of the enzymatic activity of laccases within a complex, non-model mixture.


Assuntos
Furanos , Lacase , Lignanas , Lignina , Lacase/metabolismo , Lignina/química , Lignina/metabolismo , Análise de Fourier , Ciclotrons , Cromatografia Gasosa-Espectrometria de Massas , Espectrometria de Massas/métodos
9.
Int J Biol Macromol ; 265(Pt 1): 130860, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38490397

RESUMO

Lignin is a popular material for energy transition and high-value utilization due to its low cost, non-toxicity, renewability, and widespread availability. However, its complex structure has hindered its application. Waterborne polyurethane (WPU) uses water as a dispersion medium, which is safer for humans and the environment but also leads to disadvantages such as poor mechanical properties and water resistance. In this study, we prepared multicolor photoluminescent carbon quantum dots (CQDs) in a wide range of wavelengths from lignin. We successfully prepared panchromatic CQDs by additive mixing. The redshift of the emission wavelength is attributed to the synergistic effect of the sp2 conjugated structure and the surface functional groups. The full-color solid-state luminescence of the CQDs was successfully achieved, and most importantly, the application of full-color CQDs in light-emitting diodes was realized. Moreover, the embedding of the multicolor CQDs in WPU not only makes WPU luminescent but also improves the water resistance and mechanical properties of WPUs. The hydrogen-bonding interactions between the functional groups on the surface of the CQDs and the urethane were responsible for the high performance of the composite. We investigated the UV and strong blue light shielding abilities of WPU/yellow CQDs films, which resulted from the unique absorption peaks of yellow CQDs in the UV region and the strong blue light region. This work provides an efficient method for the high-value utilization of biomass materials and paves the way for the multifunctional application of WPU.


Assuntos
Pontos Quânticos , Humanos , Pontos Quânticos/química , Poliuretanos , Lignina/química , Carbono/química , Água
10.
Biomolecules ; 14(3)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38540744

RESUMO

Laccases from white-rot fungi catalyze lignin depolymerization, a critical first step to upgrading lignin to valuable biodiesel fuels and chemicals. In this study, a wildtype laccase from the basidiomycete Fomitiporia mediterranea (Fom_lac) and a variant engineered to have a carbohydrate-binding module (Fom_CBM) were studied for their ability to catalyze cleavage of ß-O-4' ether and C-C bonds in phenolic and non-phenolic lignin dimers using a nanostructure-initiator mass spectrometry-based assay. Fom_lac and Fom_CBM catalyze ß-O-4' ether and C-C bond breaking, with higher activity under acidic conditions (pH < 6). The potential of Fom_lac and Fom_CBM to enhance saccharification yields from untreated and ionic liquid pretreated pine was also investigated. Adding Fom_CBM to mixtures of cellulases and hemicellulases improved sugar yields by 140% on untreated pine and 32% on cholinium lysinate pretreated pine when compared to the inclusion of Fom_lac to the same mixtures. Adding either Fom_lac or Fom_CBM to mixtures of cellulases and hemicellulases effectively accelerates enzymatic hydrolysis, demonstrating its potential applications for lignocellulose valorization. We postulate that additional increases in sugar yields for the Fom_CBM enzyme mixtures were due to Fom_CBM being brought more proximal to lignin through binding to either cellulose or lignin itself.


Assuntos
Basidiomycota , Celulases , Lignina/química , Lacase/metabolismo , Basidiomycota/metabolismo , Carboidratos , Açúcares , Éteres
11.
Carbohydr Polym ; 334: 122037, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553235

RESUMO

To investigate the interplay between substrate structure and enzymatic hydrolysis (EH) efficiency, poplar was pretreated with acidic sodium-chlorite (ASC), 3 % sodium-hydroxide (3-SH), and 3 % sulfuric acid (3-SA), resulting in different glucose yields of 94.10 %, 74.35 %, and 24.51 %, respectively, of pretreated residues. Residues were fractionated into cellulose, lignin and unhydrolyzed residue after EH (for lignin-carbohydrate complex (LCC) analysis) and analyzed using HPLC, FTIR, XPS, CP MAS 13C NMR and 2D-NMR (Lignin and LCC analysis). After delignification, holocellulose exhibited a dramatic increase in glucose yield (74.35 % to 90.82 % for 3-SH and 24.51 % to 80.0 % for 3-SA). Structural analysis of holocellulose suggested the synergistic interplay among cellulose allomorphs to limit glucose yield. Residual lignin analysis from un/pretreated residues indicated that higher ß-ß' contents and S/G ratios were favorable to the inhibitory effect but unfavourable to the holocellulose digestibility and followed the trend in the following order: 3-SA (L3) > 3-SH (L2) > native-lignin (L1). Analysis of enzymatically unhydrolyzed pretreated residues revealed the presence of benzyl ether (BE1,2) LCC and phenyl glycoside (PG) bond linking to xylose (X) and mannose (M), which yielded a xylan-lignin-glucomannan network. The stability, steric hindrance and hydrophobicity of this network may play a central role in defining poplar recalcitrance.


Assuntos
Lignina , Populus , Lignina/química , Hidrólise , Celulose/química , Glucose , Xilanos , Sódio , Biomassa
12.
Bioresour Technol ; 399: 130635, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552860

RESUMO

Deep eutectic solvents (DESs) offer a potential opportunity in biomass utilization industries. This work emphasized the impact of hydrogen bond donors (HBD) and acceptors (HBA) on deconstruction and valorization of rice straw. Acidity, alkyl chain length, hydrogen bonding ability and functional groups of HBD and HBA appeared to be important factors affecting the fractionated pulps and lignins, which further influenced ethanol fermentation. Among the candidate DESs, lactic acid/guanidine hydrochloride (LGH) was proved to be the most suitable one due to the excellent delignification and xylan removal. For the downstream fermentation process, 0.47 g g-1 of bioethanol with 0.55 g/L h-1 of productivity can be obtained from the LGH pulp's hydrolysate. Mass balance showed 302.8 g bioethanol and 119.0 g technical lignin can be co-generated from 1 kg dried rice straw. This "green" valorization strategy offers a promising scheme in biorefinery of lignocelluloses.


Assuntos
Lignina , Oryza , Lignina/química , Solventes Eutéticos Profundos , Solventes/química , Biomassa , Hidrólise
13.
Bioresour Technol ; 399: 130645, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554759

RESUMO

Hardwood kraft lignin from the pulping industry is burned or discarded. Its valorization was conducted by subjecting fractionation, amination with ethylenediamine, diethylenetriamine, and monoethanolamine, and crosslinking with formaldehyde or glyoxal to obtain bio-based wood adhesives. Acetone-soluble and insoluble hardwood kraft lignin were prepared and subjected to amination and then crosslinking. Fourier transform infrared, 13C NMR, 15N NMR, and X-ray photoelectron spectroscopy results revealed successful amination with amide, imine, and ether bonds and crosslinking of all samples. Hardwood kraft lignin aminated with diethylenetriamine/ethylenediamine and crosslinked using glyoxal exhibited excellent results in comparison with samples crosslinked using formaldehyde. Acetone-insoluble hardwood kraft lignin aminated and crosslinked using diethylenetriamine and formaldehyde, respectively, exhibited excellent adhesion strength with plywood, satisfying the requirements of the Korean standards. The amination and crosslinking of industrial waste hardwood kraft lignin constitute a beneficial valorization method.


Assuntos
Acetona , Aldeídos , Aminação , Madeira/química , Adesivos/análise , Adesivos/química , Poliaminas/análise , Glioxal/análise , Glioxal/química , Lignina/química , Formaldeído/análise , Etilenodiaminas
14.
Bioresour Technol ; 399: 130579, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479628

RESUMO

An effective deep eutectic solvent (DES) and Iron(III) chloride (FeCl3) combination pretreatment system was developed to improve the removal efficiency of lignin and hemicellulose from corn stover (CS) and enhance its saccharification. N-(2-hydroxyethyl)ethylenediamine (NE) was selected as the hydrogen-bond-donor for preparing ChCl-based DES (ChCl:NE), and a mixture of ChCl:NE (60 wt%) and FeCl3 (0.5 wt%) was utilized for combination pretreatment of CS at 110 ℃ for 50 min. FeCl3/ChCl:NE effectively removed lignin (87.0 %) and xylan (55.9 %) and the enzymatic hydrolysis activity of FeCl3/ChCl:NE-treated CS was 5.5 times that of CS. The reducing sugar yield of pretreated CS was 98.6 %. FeCl3/ChCl:NE significantly disrupted the crystal structure of cellulose in CS and improved the removal of lignin and hemicellulose, enhancing the conversion of cellulose and hemicellulose into monomeric sugars. Overall, this combination of FeCl3 and DES pretreatment methods has high application potential for the biological refining of lignocellulose.


Assuntos
Compostos Férricos , Lignina , Lignina/química , Cloretos , Zea mays/química , Solventes Eutéticos Profundos , Solventes/química , Biomassa , Celulose/química , Xilanos , Hidrólise
15.
Molecules ; 29(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38474449

RESUMO

In this work, a novel sustainable approach was proposed for the integral valorisation of Arctium lappa (burdock) seeds and roots. Firstly, a preliminary recovery of bioactive compounds, including unsaturated fatty acids, was performed. Then, simple sugars (i.e., fructose and sucrose) and phenolic compounds were extracted by using compressed fluids (supercritical CO2 and propane). Consequently, a complete characterisation of raw biomass and extraction residues was carried out to determine the starting chemical composition in terms of residual lipids, proteins, hemicellulose, cellulose, lignin, and ash content. Subsequently, three alternative ways to utilise extraction residues were proposed and successfully tested: (i) enzymatic hydrolysis operated by Cellulases (Thricoderma resei) of raw and residual biomass to glucose, (ii) direct ethanolysis to produce ethyl levulinate; and (iii) pyrolysis to obtain biochar to be used as supports for the synthesis of sulfonated magnetic iron-carbon catalysts (Fe-SMCC) to be applied in the dehydration of fructose for the synthesis of 5-hydroxymethylfurfural (5-HMF). The development of these advanced approaches enabled the full utilisation of this resource through the production of fine chemicals and value-added compounds in line with the principles of the circular economy.


Assuntos
Arctium , Arctium/química , Lignina/química , Extratos Vegetais/química , Celulose , Frutose
16.
GM Crops Food ; 15(1): 67-84, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38507337

RESUMO

The agricultural sugarcane residues, bagasse and straws, can be used for second-generation ethanol (2GE) production by the cellulose conversion into glucose (saccharification). However, the lignin content negatively impacts the saccharification process. This polymer is mainly composed of guaiacyl (G), hydroxyphenyl (H), and syringyl (S) units, the latter formed in the ferulate 5-hydroxylase (F5H) branch of the lignin biosynthesis pathway. We have generated transgenic lines overexpressing ShF5H1 under the control of the C4H (cinnamate 4-hydroxylase) rice promoter, which led to a significant increase of up to 160% in the S/G ratio and 63% in the saccharification efficiency in leaves. Nevertheless, the content of lignin was unchanged in this organ. In culms, neither the S/G ratio nor sucrose accumulation was altered, suggesting that ShF5H1 overexpression would not affect first-generation ethanol production. Interestingly, the bagasse showed a significantly higher fiber content. Our results indicate that the tissue-specific manipulation of the biosynthetic branch leading to S unit formation is industrially advantageous and has established a foundation for further studies aiming at refining lignin modifications. Thus, the ShF5H1 overexpression in sugarcane emerges as an efficient strategy to improve 2GE production from straw.


Assuntos
Lignina , Saccharum , Lignina/química , Lignina/metabolismo , Saccharum/genética , Saccharum/química , Saccharum/metabolismo , Oxigenases de Função Mista/metabolismo , Transcinamato 4-Mono-Oxigenase/metabolismo , Etanol/metabolismo
17.
ACS Nano ; 18(14): 10031-10044, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38547360

RESUMO

The increasing demand for improving pesticide utilization efficiency has prompted the development of sustainable, targeted, and stimuli-responsive delivery systems. Herein, a multi-stimuli-responsive nano/microcapsule bidirectional delivery system loaded with pyraclostrobin (Pyr) is prepared through interfacial cross-linking from a lignin-based Pickering emulsion template. During this process, methacrylated alkali lignin nanoparticles (LNPs) are utilized as stabilizers for the tunable oil-water (O/W) Pickering emulsion. Subsequently, a thiol-ene radical reaction occurs with the acid-labile cross-linkers at the oil-water interface, leading to the formation of lignin nano/microcapsules (LNCs) with various topological shapes. Through the investigation of the polymerization process and the structure of LNC, it was found that the amphiphilicity-driven diffusion and distribution of cyclohexanone impact the topology of LNC. The obtained Pyr@LNC exhibits high encapsulation efficiency, tunable size, and excellent UV shielding to Pyr. Additionally, the flexible topology of the Pyr@LNC shell enhances the retention and adhesion of the foliar surface. Furthermore, Pyr@LNC exhibits pH/laccase-responsive targeting against Botrytis disease, enabling the intelligent release of Pyr. The in vivo fungicidal activity shows that efficacy of Pyr@LNC is 53% ± 2% at 14 days postspraying, whereas the effectiveness of Pyr suspension concentrate is only 29% ± 4%, and the acute toxicity of Pyr@LNC to zebrafish is reduced by more than 9-fold compared with that of Pyr technical. Moreover, confocal laser scanning microscopy shows that the LNCs can be bidirectionally translocated in plants. Therefore, the topology-regulated bidirectional delivery system LNC has great practical potential for sustainable agriculture.


Assuntos
Lignina , Praguicidas , Estrobilurinas , Animais , Lignina/química , Praguicidas/farmacologia , Cápsulas/química , Emulsões/química , Peixe-Zebra , Água
18.
Bioresour Technol ; 399: 130595, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38493936

RESUMO

Poplar is widely used in the paper industry and accompanied by abundant branches waste, which is potential feedstock for bioethanol production. Acid-chlorite pretreatment can selectively remove lignin, thereby significantly increasing enzymatic efficiency. Moreover, lignin residues valorization via gasification-syngas fermentation can achieve higher fuel yield. Herein, environmental and economic aspects were conducted to assess technological routes, which guides further process optimization. Life cycle assessment results show that wood-based biorefineries especially coupling scenarios have significant advantages in reducing global warming potential in contrast to fossil-based automotive fuels. Normalization results indicate that acidification potential surpasses other indicators as the primary impact category. In terms of economic feasibility, coupling scenarios present better investment prospects. Bioethanol yield is the most critical factor affecting market competitiveness. Minimum ethanol selling price below ethanol international market price is promising with higher-levels technology. Further work should be focused on technological breakthrough, consumable reduction or replacement.


Assuntos
Etanol , Lignina , Animais , Lignina/química , Etanol/química , Madeira/metabolismo , Biotecnologia/métodos , Fermentação , Estágios do Ciclo de Vida
19.
Bioresour Technol ; 399: 130610, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508284

RESUMO

Lignin utilization in value-added co-products is an important component of enabling cellulosic biorefinery economics. However, aqueous dilute acid pretreatments yield lignins with limited applications due to significant modification during pretreatment, low solubility in many solvents, and high content of impurities (ash, insoluble polysaccharides). This work addresses these challenges and investigates the extraction and recovery of lignins from lignin-rich insoluble residue following dilute acid pretreatment and enzymatic hydrolysis of corn stover using three extraction approaches: ethanol organosolv, NaOH, and an ionic liquid. The recovered lignins exhibited recovery yields ranging from 30% for the ionic liquid, 44% for the most severe acid ethanol organosolv condition tested, and up to 86% for the most severe NaOH extraction condition. Finally, the fractional solubilities of different recovered lignins were assessed in a range of solvents and these solubilities were used to estimate distributions of Hildebrand and Hansen solubility parameters using a novel approach.


Assuntos
Líquidos Iônicos , Lignina , Lignina/química , Zea mays/química , Hidróxido de Sódio , Solventes , Etanol/química , Ácidos , Hidrólise
20.
Int J Biol Macromol ; 265(Pt 1): 130911, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38492693

RESUMO

In this study, the solubilization and structural changes of lignin in naked oat stems were investigated under subcritical water autohydrolysis systems (170-210 °C, 0.68-1.85 MPa). In this system, Hemicellulose was preferentially hydrolyzed in the liquid water at elevated temperatures, leading to the production of acetic acid and glucuronic acid, which acidified the reaction system. Under acidic and high-temperature conditions, lignin primarily underwent degradation and condensation reactions. At autohydrolysis temperatures below 190 °C and autohydrolysis pressures below 1.22 MPa, lignin degradation was predominant, realizing a maximum lignin removal of 47.8 % and breakage of numerous ß-O-4 bonds from lignin. At autohydrolysis temperatures above 190 °C and autohydrolysis pressures above 1.22 MPa, lignin condensation dominated, with an increase in the amount of organic acids generated upon hemicellulose degradation, leading to condensation reactions with the degraded low-molecular-weight lignin. The degree of lignin condensation was positively correlated with the temperature of the reaction system. This study provides essential insights into the dynamic changes in the structure of lignin in both the hydrolysis residue and hydrolysis solution during subcritical water autohydrolysis.


Assuntos
Lignina , Água , Lignina/química , Avena , Compostos Orgânicos , Temperatura , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...